柯洁能成为九冠王吗?
柯洁(九段)的上一个世界冠军可以追溯到 2020 年三星杯 2-0 胜申真谞(九段),连续三年没有获得世界冠军,上一次和世界冠军失之交臂是 2023 年亚运会负許皓鋐(九段)。不由让人疑问,柯洁在职业生涯再拿一个世界冠军的概率有多少?为了回答这个问题,我们需要一个衡量棋手水平的模型。一个比较简单的方法就是通过 Elo 等级分。
Bradley-Terry 模型
今天的 Elo 等级分和 Arpad Elo 的原始假设有比较大的差异,尤其是在选择的分布上。一般我们会假设使用 Bradley-Terry 模型构造 elo 等级分模型,假设 \(R(i,t)\) 是 \(i\) 选手在 \(t\) 时刻的 Elo 分,即对于两个选手 \(\alpha\) 和 \(\beta\) 在 \(t\) 时刻 \(\alpha\) 获胜的概率是
\[\begin{align} \gamma(i,t)&=10^\frac{R(i,t)}{400}\\ P(\alpha\gt\beta,t)&=\frac{\gamma(\alpha,t)}{\gamma(\alpha,t)+\gamma(\beta,t)} \end{align}\]然而当两位选手下完一盘棋后,后验的结果如何反馈到 elo 分的修正上是一个比较大的问题。一个比较好的算法是 WHR Algorithm,也就是 Go Ratings 使用的算法。
举个例子来说,我们以截止到 2024 年 5 月 10 日数据的最新等级分来看的话,如果我们比较柯洁和战鹰(二段)的等级分的话,柯洁的等级分是 3694 分,而战鹰的等级分是 2824 分。如果明天就有一盘柯洁和战鹰的比赛的话,那么战鹰战胜柯洁的概率是 0.66%,从中可以看出顶尖职业棋手间微妙的差距。
申真谞的等级分是 3877 分,所以柯洁对战申真谞胜出的概率是 25.86%。而柯洁前两天爆冷负刘宇航(六段),刘宇航的等级分是 3536 分,发生这样爆冷的概率是 28.70%。从这个角度来看,柯洁能赢申真谞本身也属于一种爆冷了。
建模
然而锦标赛并不是单纯的胜率对比,一名棋手在淘汰赛中需要进行多轮比赛,即使胜率总是 90%,连续赢 8 轮的概率也只有 43%。本着「量子力学量力学,随机过程随机过」的原则,我们不如使用蒙特卡洛方法来模拟这些锦标赛的规则,从而能更好估计夺冠的分布。
我们考虑下面的个人世界围棋赛事:应式杯、春兰杯、三星杯、LG 杯、梦百合杯、烂柯杯。应式杯每四年举办一次,而亚运会下一届是不是正式项目不确定。北海新绎杯由于今年第一年办,不确定之后的赛制以及会不会继续办,先不纳入计算。
为了简化计算,我们不妨做下面的假设:
- 我们定义淘汰赛为跳过全部轮空轮次的淘汰赛。
- 进入淘汰赛 n 个名额的总是世界排名前 n 名的选手。
- 柯洁总能进入淘汰赛。
- 进入淘汰赛的 n 名棋手的比赛顺序完全随机,忽略部分比赛的同一国家 / 地区选手回避原则。
- 模拟过程中各选手 elo 分不再变化。
于是我们简化各个杯赛模拟规则如下:
杯赛 | 本赛选手数 | 规则 |
---|---|---|
应式杯 | 16 | 单败淘汰,半决赛三番棋,决赛五番棋 |
春兰杯 | 16 | 单败淘汰,决赛三番棋 |
三星杯 | 16 | 单败淘汰,决赛三番棋 |
LG 杯 | 32 | 单败淘汰,决赛三番棋 |
梦百合杯 | 32 | 单败淘汰,半决赛三番棋,决赛五番棋 |
烂柯杯 | 32 | 单败淘汰,决赛三番棋 |
胜率
由于选手数量不会超过 32 人,我们可以先根据等级分计算一下世界前 32 强棋手之间的胜率矩阵来加速计算:
ELO_RATINGS = {
"Shin Jinseo": 3877,
"Ke Jie": 3694,
"Park Junghwan": 3672,
"Wang Xinghao": 3671,
"Gu Zihao": 3660,
"Li Qincheng": 3660,
"Ding Hao": 3658,
"Li Xuanhao": 3655,
"Byun Sangil": 3653,
"Yang Dingxin": 3652,
"Zhao Chenyu": 3637,
"Fan Tingyu": 3620,
"Yang Kaiwen": 3617,
"Dang Yifei": 3616,
"Li Weiqing": 3608,
"Lian Xiao": 3608,
"Mi Yuting": 3594,
"Iyama Yuta": 3585,
"Xu Jiayang": 3584,
"Shin Minjun": 3583,
"Ichiriki Ryo": 3582,
"Liao Yuanhe": 3581,
"Xu Haohong": 3581,
"Xie Erhao": 3563,
"Xie Ke": 3562,
"Shi Yue": 3560,
"Kang Dongyun": 3558,
"Jiang Weijie": 3556,
"Shibano Toramaru": 3555,
"Tan Xiao": 3548,
"Tuo Jiaxi": 3541,
"Kim Myounghoon": 3536,
}
PLAYERS_INDEXES = ELO_RATINGS.each_with_index.map do |pair, index|
[pair[0].to_s, index]
end.to_h
WINNING_RATES = (ELO_RATINGS.map do |_, rating_1|
ELO_RATINGS.map do |_, rating_2|
10 ** (rating_1.to_f / 400) / (10 ** (rating_1.to_f / 400) + 10 ** (rating_2.to_f / 400))
end
end)
# Returns the possibility of winning
def beats(a, b)
WINNING_RATES[PLAYERS_INDEXES[a]][PLAYERS_INDEXES[b]]
end
构造比赛规则
我们构造一个辅助函数,能选出排名前 n 的选手:
# Pick first n players
def pick_players(n)
ELO_RATINGS.keys[0...n]
end
然后我们模拟两选手下 n 番棋,返回胜者:
# Emulate a game between two players
def emulate_game(a, b, num)
num.times.map { rand < beats(a, b) }.count(true) > num / 2 ? a : b
end
然后我们先模拟一下应式杯的规则:
def simulate_yingshi_tournament
players = pick_players(16).shuffle
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 2 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 5) } # 1 winner
players.first
end
我们来模拟 1000 次,看看结果:
p 1000.times.map { simulate_yingshi_tournament }.tally.sort_by { |_, v| -v }.to_h
# {"Shin Jinseo"=>553, "Ke Jie"=>68, "Park Junghwan"=>54, "Li Qincheng"=>44, "Wang Xinghao"=>40, "Li Xuanhao"=>33, "Byun Sangil"=>32, "Gu Zihao"=>31, "Ding Hao"=>30, "Yang Dingxin"=>28, "Zhao Chenyu"=>24, "Li Weiqing"=>16, "Dang Yifei"=>16, "Fan Tingyu"=>12, "Yang Kaiwen"=>11, "Lian Xiao"=>8}
申真谞赢下了其中的 553 个冠军,而柯洁赢下了其中的 68 个。
模拟
我们先试图模拟一下 2024 年的情况,也就是全部 6 个杯赛都会举行。
def simulate_yingshi_tournament
players = pick_players(16).shuffle
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 2 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 5) } # 1 winner
players.first
end
def simulate_chunlan_tournament
players = pick_players(16).shuffle
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 2 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 1 winner
players.first
end
def simulate_samsung_tournament
players = pick_players(16).shuffle
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 2 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 1 winner
players.first
end
def simulate_lg_tournament
players = pick_players(32).shuffle
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 16 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 2 winner
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 1 winner
players.first
end
def simulate_mengbaihe_tournament
players = pick_players(32).shuffle
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 16 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 2 winner
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 5) } # 1 winner
players.first
end
def simulate_lanke_tournament
players = pick_players(32).shuffle
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 16 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 2 winner
players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 1 winner
players.first
end
def has_kejie_won_tournament
[simulate_chunlan_tournament, simulate_samsung_tournament, simulate_lg_tournament, simulate_mengbaihe_tournament, simulate_lanke_tournament].count("Ke Jie")
end
模拟 10000 次后,柯洁期望是每年获得 0.3881 个世界冠军。如果应式杯不举行,模拟了 10000 次,柯洁获得至少一个冠军的概率是 0.3256。由于应式杯每四年举行一次,我们取其期望,也就是柯洁每年能获得 0.3412 个世界冠军。
生涯估计
整体来说,淘汰赛如果不采用单败淘汰制,例如在半决赛和决赛种引入三番棋和五番棋,那么其就会体现为一个方差更小的二项分布,会更能体现实力本身的差距,相对来说运气成分会变小。像应式杯和梦百合杯这种决赛五番棋的,对于柯洁来说,如果正好对上申真谞就会变得极为不利,反之就会变得极为有利。在这个大前提下,锦标赛引入的这种不确定性增大了柯洁夺冠的概率。
然而,对于一名围棋棋手而言,其生涯是有限的,我们无法相信柯洁会一直维持他职业生涯的巅峰状态,随着时间,他的状态会越来越差。如果我们假设柯洁能在未来 5 年内都能维持这样的表现不下滑,那么其至少再拿一个世界冠军的概率是 88.60%;如果在未来 8 年内都能维持这样的表现不下滑,那么其至少再拿一个世界冠军的概率是 96.56%。整体来说,成为九冠王的概率还是比较大的。
Comments