柯洁(九段)的上一个世界冠军可以追溯到 2020 年三星杯 2-0 胜申真谞(九段),连续三年没有获得世界冠军,上一次和世界冠军失之交臂是 2023 年亚运会负許皓鋐(九段)。不由让人疑问,柯洁在职业生涯再拿一个世界冠军的概率有多少?为了回答这个问题,我们需要一个衡量棋手水平的模型。一个比较简单的方法就是通过 Elo 等级分。

Bradley-Terry 模型

今天的 Elo 等级分和 Arpad Elo 的原始假设有比较大的差异,尤其是在选择的分布上。一般我们会假设使用 Bradley-Terry 模型构造 elo 等级分模型,假设 \(R(i,t)\) 是 \(i\) 选手在 \(t\) 时刻的 Elo 分,即对于两个选手 \(\alpha\) 和 \(\beta\) 在 \(t\) 时刻 \(\alpha\) 获胜的概率是

\[\begin{align} \gamma(i,t)&=10^\frac{R(i,t)}{400}\\ P(\alpha\gt\beta,t)&=\frac{\gamma(\alpha,t)}{\gamma(\alpha,t)+\gamma(\beta,t)} \end{align}\]

然而当两位选手下完一盘棋后,后验的结果如何反馈到 elo 分的修正上是一个比较大的问题。一个比较好的算法是 WHR Algorithm,也就是 Go Ratings 使用的算法。

举个例子来说,我们以截止到 2024 年 5 月 10 日数据的最新等级分来看的话,如果我们比较柯洁和战鹰(二段)的等级分的话,柯洁的等级分是 3694 分,而战鹰的等级分是 2824 分。如果明天就有一盘柯洁和战鹰的比赛的话,那么战鹰战胜柯洁的概率是 0.66%,从中可以看出顶尖职业棋手间微妙的差距。

申真谞的等级分是 3877 分,所以柯洁对战申真谞胜出的概率是 25.86%。而柯洁前两天爆冷负刘宇航(六段),刘宇航的等级分是 3536 分,发生这样爆冷的概率是 28.70%。从这个角度来看,柯洁能赢申真谞本身也属于一种爆冷了。

建模

然而锦标赛并不是单纯的胜率对比,一名棋手在淘汰赛中需要进行多轮比赛,即使胜率总是 90%,连续赢 8 轮的概率也只有 43%。本着「量子力学量力学,随机过程随机过」的原则,我们不如使用蒙特卡洛方法来模拟这些锦标赛的规则,从而能更好估计夺冠的分布。

我们考虑下面的个人世界围棋赛事:应式杯、春兰杯、三星杯、LG 杯、梦百合杯、烂柯杯。应式杯每四年举办一次,而亚运会下一届是不是正式项目不确定。北海新绎杯由于今年第一年办,不确定之后的赛制以及会不会继续办,先不纳入计算。

为了简化计算,我们不妨做下面的假设:

  1. 我们定义淘汰赛为跳过全部轮空轮次的淘汰赛。
  2. 进入淘汰赛 n 个名额的总是世界排名前 n 名的选手。
  3. 柯洁总能进入淘汰赛。
  4. 进入淘汰赛的 n 名棋手的比赛顺序完全随机,忽略部分比赛的同一国家 / 地区选手回避原则。
  5. 模拟过程中各选手 elo 分不再变化。

于是我们简化各个杯赛模拟规则如下:

杯赛 本赛选手数 规则
应式杯 16 单败淘汰,半决赛三番棋,决赛五番棋
春兰杯 16 单败淘汰,决赛三番棋
三星杯 16 单败淘汰,决赛三番棋
LG 杯 32 单败淘汰,决赛三番棋
梦百合杯 32 单败淘汰,半决赛三番棋,决赛五番棋
烂柯杯 32 单败淘汰,决赛三番棋

胜率

由于选手数量不会超过 32 人,我们可以先根据等级分计算一下世界前 32 强棋手之间的胜率矩阵来加速计算:

ELO_RATINGS = {
  "Shin Jinseo": 3877,
  "Ke Jie": 3694,
  "Park Junghwan": 3672,
  "Wang Xinghao": 3671,
  "Gu Zihao": 3660,
  "Li Qincheng": 3660,
  "Ding Hao": 3658,
  "Li Xuanhao": 3655,
  "Byun Sangil": 3653,
  "Yang Dingxin": 3652,
  "Zhao Chenyu": 3637,
  "Fan Tingyu": 3620,
  "Yang Kaiwen": 3617,
  "Dang Yifei": 3616,
  "Li Weiqing": 3608,
  "Lian Xiao": 3608,
  "Mi Yuting": 3594,
  "Iyama Yuta": 3585,
  "Xu Jiayang": 3584,
  "Shin Minjun": 3583,
  "Ichiriki Ryo": 3582,
  "Liao Yuanhe": 3581,
  "Xu Haohong": 3581,
  "Xie Erhao": 3563,
  "Xie Ke": 3562,
  "Shi Yue": 3560,
  "Kang Dongyun": 3558,
  "Jiang Weijie": 3556,
  "Shibano Toramaru": 3555,
  "Tan Xiao": 3548,
  "Tuo Jiaxi": 3541,
  "Kim Myounghoon": 3536,
}

PLAYERS_INDEXES = ELO_RATINGS.each_with_index.map do |pair, index|
  [pair[0].to_s, index]
end.to_h

WINNING_RATES = (ELO_RATINGS.map do |_, rating_1|
  ELO_RATINGS.map do |_, rating_2|
    10 ** (rating_1.to_f / 400) / (10 ** (rating_1.to_f / 400) + 10 ** (rating_2.to_f / 400))
  end
end)

# Returns the possibility of winning
def beats(a, b)
  WINNING_RATES[PLAYERS_INDEXES[a]][PLAYERS_INDEXES[b]]
end

构造比赛规则

我们构造一个辅助函数,能选出排名前 n 的选手:

# Pick first n players
def pick_players(n)
  ELO_RATINGS.keys[0...n]
end

然后我们模拟两选手下 n 番棋,返回胜者:

# Emulate a game between two players
def emulate_game(a, b, num)
  num.times.map { rand < beats(a, b) }.count(true) > num / 2 ? a : b
end

然后我们先模拟一下应式杯的规则:

def simulate_yingshi_tournament
  players = pick_players(16).shuffle
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 2 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 5) } # 1 winner
  players.first
end

我们来模拟 1000 次,看看结果:

p 1000.times.map { simulate_yingshi_tournament }.tally.sort_by { |_, v| -v }.to_h

# {"Shin Jinseo"=>553, "Ke Jie"=>68, "Park Junghwan"=>54, "Li Qincheng"=>44, "Wang Xinghao"=>40, "Li Xuanhao"=>33, "Byun Sangil"=>32, "Gu Zihao"=>31, "Ding Hao"=>30, "Yang Dingxin"=>28, "Zhao Chenyu"=>24, "Li Weiqing"=>16, "Dang Yifei"=>16, "Fan Tingyu"=>12, "Yang Kaiwen"=>11, "Lian Xiao"=>8}

申真谞赢下了其中的 553 个冠军,而柯洁赢下了其中的 68 个。

模拟

我们先试图模拟一下 2024 年的情况,也就是全部 6 个杯赛都会举行。

def simulate_yingshi_tournament
  players = pick_players(16).shuffle
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 2 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 5) } # 1 winner
  players.first
end

def simulate_chunlan_tournament
  players = pick_players(16).shuffle
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 2 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 1 winner
  players.first
end

def simulate_samsung_tournament
  players = pick_players(16).shuffle
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 2 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 1 winner
  players.first
end

def simulate_lg_tournament
  players = pick_players(32).shuffle
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 16 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 2 winner
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 1 winner
  players.first
end

def simulate_mengbaihe_tournament
  players = pick_players(32).shuffle
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 16 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 2 winner
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 5) } # 1 winner
  players.first
end

def simulate_lanke_tournament
  players = pick_players(32).shuffle
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 16 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 8 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 4 winners
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 1) } # 2 winner
  players = players.each_slice(2).map { |a, b| emulate_game(a, b, 3) } # 1 winner
  players.first
end

def has_kejie_won_tournament
  [simulate_chunlan_tournament, simulate_samsung_tournament, simulate_lg_tournament, simulate_mengbaihe_tournament, simulate_lanke_tournament].count("Ke Jie")
end

模拟 10000 次后,柯洁期望是每年获得 0.3881 个世界冠军。如果应式杯不举行,模拟了 10000 次,柯洁获得至少一个冠军的概率是 0.3256。由于应式杯每四年举行一次,我们取其期望,也就是柯洁每年能获得 0.3412 个世界冠军。

生涯估计

整体来说,淘汰赛如果不采用单败淘汰制,例如在半决赛和决赛种引入三番棋和五番棋,那么其就会体现为一个方差更小的二项分布,会更能体现实力本身的差距,相对来说运气成分会变小。像应式杯和梦百合杯这种决赛五番棋的,对于柯洁来说,如果正好对上申真谞就会变得极为不利,反之就会变得极为有利。在这个大前提下,锦标赛引入的这种不确定性增大了柯洁夺冠的概率。

然而,对于一名围棋棋手而言,其生涯是有限的,我们无法相信柯洁会一直维持他职业生涯的巅峰状态,随着时间,他的状态会越来越差。如果我们假设柯洁能在未来 5 年内都能维持这样的表现不下滑,那么其至少再拿一个世界冠军的概率是 88.60%;如果在未来 8 年内都能维持这样的表现不下滑,那么其至少再拿一个世界冠军的概率是 96.56%。整体来说,成为九冠王的概率还是比较大的。

Comments